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SubSet Sum (SUBSUM): 
- Instance: ⟨A,k⟩, where A is a list of positive integers, I.e. A = a1, a2, …, an s.t. ai ∈ Z+, and  

k is a positive integer, k ∈ Z+. 
- Question: Is there a subsequence of A that adds up to k? 

I.e. of subsequence of A: ai1, ai2, …, aim s.t. 1 ≤ i1 ≤ i2 ≤ … ≤ im ≤ m. 
E.g. If A = 3, 2, 17, 11, 3, 9 and k = 15, then the answer is yes. (3+3+9 = 15) However, if 
k = 24, then the answer is no. 

- Theorem 11.1: SUBSUM ∈ NPC 
 
Proof: 

a. Proof that SUBSUM ∈ NP: 
The certificate here is the subsequence of A. The verifier simply checks that it is 
a subsequence of A and that the subsequence adds up to k. 

b. Show that XCOV ≤p SUBSUM: 
Given ⟨U,C⟩, which is an instance of XCOV, construct in polytime ⟨A,k⟩, which is 
an instance of SUBSUM, s.t. ⟨U,C⟩ ∈ XCOV iff ⟨A,k⟩ ∈ SUBSUM. 
Let U = {u0, u1, …, un-1}. 
Let C = {A1, A2, …, Am} s.t. Aj ⊆ U. 
 
Intuition: We will represent every element in set Aj as a binary number by viewing 
it in binary. 
For example: 
U = {u0, u1, u2, u3} 
A1 = {u2, u3}  
A2 = {u0, u1, u2}  
A3 = {u0, u1}  
A4 = {u0, u3}  
A5 = {u0, u2}  
We will create a matrix where every row corresponds to a set and every column 
corresponds to an element.  
If an element, y, is in a set, x, we put a 1 in (x,y).  
If an element, y, is not in a set, x, we put a 0 in (x,y). 
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This is how our matrix will look like: 

 
Notice how A1 has elements u2 and u3, but not u0 or u1.  
Hence, the cell where u3 and A1 intersect has a 1. 
Similarly, the cell where u2 and A1 intersect has a 1. 
And the cell where u1 and A1 intersect and where u0 and A1 has a 0. 
Each row of binary bits will be labelled bi. For example, the first row is labelled b1. 
The below picture just references the fact that if an element is in a set, we put a 1 
in the cell where they intersect, and if an element is not in a set, we put a 0 in the 
cell where they intersect. 

 
 
Since we are looking for an exact cover, we are looking for sets s.t. when we add 
up their binary representations, we get a binary number s.t. all bits are 1’sr. 
For example, take A1 and A3 from our example. 
A1 = 1100 
A3 = 0011 
  1100 
+0011 
=1111 ← All the bits are 1 
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However, there’s an issue with this, and the issue is carrying over 1’s. 
For example, take A2, A3, and A5 from our example 
A2 = 0111 
A3 = 0011 
A5 = 0101 
 
+0111 
+0011 
+0101 
=1111 
A2, A3, and A5 aren’t an exact cover because none of them contains U4 and there 
are duplicates. However, when you add up their binary representations, you get 
1111. 
We can solve this by viewing bi’s in base (m + 1) because the only way to get a 
carry over is to sum m + 1 sets, but we only have m sets, so it's impossible to 
have a carry over. 

c. Claim: (U, C) has an exact cover iff there is a subsequence of b1, ..., bm, 
viewed as base (m + 1) numbers, that add up to 111...1, in base (m + 1).  
 

Note: 111...1, in base (m + 1) means that k =  (m+1)i = .∑
n−1

i=0
m

(m+1)  − 1n

 

Note: A subsequence of b1, ..., bm, viewed as base (m + 1) numbers means that  

bi = (bi[j])*(m+1)j.∑
n−1

j=0
 

 
Proof: 
Suppose {Aj1 , ..., Ajk} is an exact cover of C. 
↔  ∀i, 0≤ i ≤n−1, ∃ unique t, 1≤ t ≤k, s.t. u i ∈ Ajt. 
↔  ∀i, 0≤ i ≤n−1, ∃ unique t, 1≤ t ≤k, s.t. b jt[i] = 1. 
↔  the sum of b j1, ..., bjk = 111…1 (as base (m + 1) numbers). 
 
This is polynomial as we just need to construct a (m × n) matrix. 
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Partition (PART): 
- Instance: ⟨A⟩, where A is a list of positive integers, I.e. A = a1, a2, …, an s.t. ai ∈ Z+. 
- Question: Is there a subsequence of A that adds up to half of the total sum of A? 

I.e. Is there a subsequence of A s.t. their sum = ?2

i∑
n

i=1
a

 
- Theorem 11.2: PART ∈ NPC 

 
Proof: 

a. Proof that PART ∈ NP: 
The certificate is a sequence of numbers and the verifier verifies that this 
sequence is a subsequence of A and that their sum is equal to half the sum of 
the elements in A. 

b. Show that SUBSUM ≤p PART: 
Given  ⟨A, k⟩, which is an instance of SUBSUM, construct in polynomial time ⟨A’⟩ 
s.t. ⟨A, k⟩ ∈ SUBSUM iff ⟨A’⟩ ∈ PART. 
 
Intuition: 

Let T = ai.∑
n

i=1
 

We can add some of the elements in A and get k. 
If we take out k from our original sequence we're left with T−k. We can use that 
as our first half. 
If we take k from (T-k), we’re left with T-2k. 
(T-k) and k add up to A. 
Now, if we add (T-2k), we can partition A into 2 halves: 

1. T-k 
2. k and (T-2k) 

 
Here’s a picture. 

 
However, this picture is misleading, as it's possible that T − 2k is negative but our 
sequence must use a positive number. In that case, use 2k − T. 
Case 1. T − 2k < 0 → T − k ≤ k  
Here we use 2k − T. 
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Case 2. T − 2k = 0 → k = T/2  
Then we are done, this is exactly what we are looking for. 

c. Claim: ⟨A, k⟩ ∈ SUBSUM iff ⟨A’⟩ ∈ PART. 

 
The construction of A’ from A, k is polynomial time. 

Linear Programming (LP): 
- An optimization Problem. 
- Max/min a linear function subject to linear inequality constraints. 
- For example to minimize the cost of a diet, we could just buy nothing but then we would 

starve. Here, the constraint is that we have sufficient nutrients in our diet. 
- For example, we want to maximize profit from productive activities such that resource 

constraints are not exceeded. 
- Example: Minimize c1x1 + … + cnxn where xi are variables and ci are constants in Z s.t. 

a11x1 + … + a1nx1 ≥ b1 
. 
. 
. 
am1x1 + … + amnxm ≥ bm 
This can be written simply as A .x ≤ b  

- There is a polynomial time algorithm for LP if  ∈ Qn.x  
However, if we insist that the solution, be integers, then it is NPC.,x  

- The decision version of the linear programming questions works as follows: 
“Given A and , is there a vector  s.t. A ?”b x x ≤ b  

Integer Linear Programming (ILP): 
- Instance: ⟨A, B⟩ where A = m × n matrix of Z and b = m-vector of Z. 
- Question: Is there an  s.t. A  ≤  [  is a n-vector]x x b x  
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Zero or One Equations (ZOE): 
- Instance: ⟨A⟩ where A = 0/1 m × n matrix. 

- Question: Is there an  s.t. A  ≤  ? [  is a n x 1 vector]x x x  
- Theorem 11.3: ZOE ∈ NPC 

 
Proof: 

a. Proof that ZOE ∈ NP: 
The certificate is a 0/1 vector of length n and the verifier verifies that the dot 
product of any row in matrix A with equals to 1.x  

b. Show that XCOV ≤p ZOE: 
Given ⟨U, C⟩, which is an instance of XCOV, construct in polynomial time ⟨A⟩, 
which is an instance of ZOE, s.t. ⟨U, C⟩ ∈ XCOV iff ⟨A⟩ ∈ ZOE. 
Let U = {u1, … ,un}. 
Let C = {A1, … ,Am} Aj ⊆ U. 

 
Columns represent sets. 
Rows represent elements. 
1 means that the set has the element. 
Each xi in is either 0 or 1.x  
xi = 1 means that we are selecting that set for our exact cover. 
xi = 0 means that we are not selecting that set for our exact cover. 
Each  ∈ {0, 1}m defines a subset of C.x  
C  = {Aji | xj = 1}. x  
Consider the dot product of (The i-th row of A) and , denoted asx   
(The i-th row of A)* .x  
(The i-th row of A)* = ai1x1 + ai2x2 + … + aimxmx  
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(The i-th row of A)*  is the number of times u, appears in sets in C .x  x  

We want A  to be  of size n × 1.x  
c. Claim: ⟨U, C⟩ ∈ XCOV iff ⟨A⟩ ∈ ZOE 

If ⟨U, C⟩ has an exact cover C’, then = wherex  

 satisfies . 

Conversely, if satisfies  then C  = {Aj | xj = 1} is anx  x  
exact cover. 
Therefore, ZOE ∈ NPC. 
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Zero One Linear Programming (ZOLP): 
- Instance: ⟨A, b⟩ where A is a m × n matrix and b is a m-vector of Z. 
- Question: Is there an  s.t. A  ≤ ? [  is a n-vector ∈ {0, 1}n]x x b x  
- Note: To turn the equality a11x1 + a12x2 + … + a1nxn = 1, we simply do 

a11x1 + a12x2 + … + a1nxn ≤ 1 and a11x1 + a12x2 + … + a1nxn ≥ 1. However, since we want 
everything to be in the form of A  ≤ , we multiple the second inequality by (-1).x b  
Hence, we get: 

1. a11x1 + a12x2 + … + a1nxn ≤ 1 
2. -a11x1 - a12x2 - … - a1nxn ≤ -1 

These 2 inequalities, together, are equivalent to a11x1 + a12x2 + … + a1nxn = 1. 
- Theorem 11.4: ZOLP ∈ NPC 

 
Proof: 

a. Proof that ZOLP ∈ NP 
The certificate is the vector. The verifier just multiplies the matrix with the vector 
and makes sure that the dot product of the ith row of the matrix with the ith element 
of the vector is less than or equal to bi. 

b. Show that ZOE ≤P ZOLP 
Given ⟨A⟩, which is an instance of ZOE, construct in polynomial time ⟨A’⟩, which is 

an instance of ZOLP s.t. there exists an where A = iff there exists an  x x  

where A’ ≤ .  y y  

As shown above, . 
Note: Since A is a m x n matrix and (-A) is also a m x n matrix, A’ is a (2m) x n 
matrix and b is a (2m) vector where the first half of it is 1’s and the second half of 
it is (-1)’s. 

  



CSCC63 Week 11 Notes 
9 

- Corollary 11.5: ILP ∈ NPC 
Note: ZOLP ≤P ILP 
Proof: 

a. Show that VC ≤P ZOLP: 
Given ⟨G, k⟩, which is an instance of VC, construct in polynomial time, ⟨A, ⟩,b  
which is an instance of ZOLP s.t. G has VC of size k iff there exists a  s.t.x  
A  ≤ .x b  
Note: G = (V,E) is an undirected graph.  
Let V = {u1, u2, …, un}. 
We will introduce variables xi, ... , xn ∈ {0, 1}.  
Each  = (xi, …, xn) corresponds to a V’ ⊆ V.x   
We do this by having ui ∈ V’ iff xi = 1. 
x1 + x2 + … + xn ≤ k (|V’| ≤ k) 
To show that V’ covers all of the edges, we do xi + xj ≥ 1 ∀{ui, uj} ∈ E. 
However, since we want ≤, we will turn xi + xj ≥ 1 into -xi - xj ≤ -1. 

 
A has all 1's on the first row. 
Every row afterwards has all 0's except for -1's in the i-th and j-th column. 

 
3DM: 

- Suppose we have a coding competition with the following rule: 
- Each team must have exactly 3 people which consists of one 2nd year student, 

one 3rd year student and one 4th year student. 
- Suppose there are n 2nd year students, n 3rd year students and n 4th year students. 
- We know that certain triples are compatible, meaning that the people in that triple get 

along, and certain triples are not compatible, meaning that the people in that triple don’t 
get along.  

- Can we make n teams where every team is disjoint and every team consists of 
compatible teams from one person in each year? 

- This is an example of a problem known as 3 dimensional matching. 
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- Instance: ⟨A, B, C, M⟩ where A, b, C are disjoint sets of n elements each and  
M ⊆ A × B × C (M is the compatible triples.) 

- Question: Is there M’ ⊆ M s.t. |M’| = n and ∀ disjoint sets (a, b, c), (a’, b’, c’) ∈ M’, a ≠ 
a’,  
b ≠ b’,c ≠ c’? 
I.e. Is there a subset of M, M’, s.t. there n triples/teams and the teams must consist of 
distinct people. Note: M’ is called a matching. 

- Theorem 11.6: 3DM ∈ NPC 
 
Proof: 

a. 3DM ∈ NP 
b. Show that 3SAT ≤p 3DM 

Given a 3-CNF formula F, construct in polynomial time (A, B, C, M) s.t.  
F is satisfiable iff M’ ⊆ M is a matching. 
F's variables are x1, … , xn. 
F = C1 ∧ C2 ∧ . . . ∧ Cm 
Cj = lj

1 ∨ lj
2 ∨ lj

3 
 
Group I triples: 

- For every variable xi we will construct a gadget like shown below. 
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This is an example of a gadget with 4 clauses. 

- For every variable and every clause, we will have 2 triples, which will be 
interconnected in the above pattern. 

- We label xij
a for each item where a means positive or negative. If a = 0, 

then xij
0 is negative and if a = 1, then xij

1 is positive. Furthermore, i means 
that this is the ith variable and j means that this is the jth clause. 

- The elements aij and bij they are constructed as follows:  
- aij is connected to xij

1 and bij. 
- bij is connected to xij

0 and aij+1. 
- These interconnections are done in such a way that if we select the 

shaded triple we can not select the unshaded triple that follows. 
- If we select the triple containing x11

1 then we cannot also select the 
triple containing x11

0 because they share b11. 
- If we choose one shaded triple, they need to be all shaded. 
- If we choose one clear triple, they need to be all clear. 
- This is what we want, since x11 can only be one truth value. 

- Here’s how we create the triples more precisely: 
∀i, j where 1 ≤ i ≤ n and 1 ≤ j ≤ m, we have (aij, bij, xij

1) and (aij⊕1, bij, xij
0), 

where . 
- We have 2mn of these triples. 
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Group 2 triples: 
- Let Cj = lj

1 ∨ lj
2 ∨ lj

3. 
- We will make one triple per literal, 3 for the entire clause. 
- Take lj

t, where t is 1, 2, or 3. There are 2 possibilities for it. 
1. lj

t is a positive literal. 
I.e. lj

t = xi 
Hence, we create a triple (aj, bj, xij

0) where aj ∈ A and bj ∈ B. 
2. lj

t is a negative literal. 
3. I.e. lj

t = ㄱxi 
Hence, we get (aj, bj, xij

1) where aj ∈ A and bj ∈ B. 
We take the xij that’s opposite to our xi so that we take the variable that 
was not selected in our previous gadget. 
Here’s a picture. 

 
Here, a1 and b1 are in ㄱx1. 
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Here, a1 and b1 are in x2. 

 
Here, a1 and b1 are in ㄱx3. 
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The whole thing looks like this 

 
- There are 3m such triples here. There are m clauses and each clause has 

3 triples. 
Group 3 Triples: 

- Recall the 2mn triples from group 1.  
xij

0 and xij
1 are the tips of the triangles in group 1.  

Half of the 2mn triples (mn triples) will be covered by choosing whether or 
not to use xij

0 or xij
1. 

Another m triples will be covered because we have chosen certain triples, 
one per clause, to indicate which literal of that clause will make that whole 
clause true. 
2mn - mn - m = m(n-1). This means that there are m(n-1) triples that have 
not been covered yet. We cover them here. 

- We will introduce new variables (~ak, ~bk, xij
0) and (~ak, ~bk, xij

1), where 1 
≤ k ≤ m(n-1). In total, we have 2m2n(n-1) triples. 

In total, we define: 
- A = {aij | 1 ≤ i ≤ n} U {aj | 1 ≤ j ≤ m} U {~ak| 1 ≤ k ≤ m(n − 1)} 
- B = {bij | 1 ≤ i ≤ n} U {bj | 1 ≤ j ≤ m} U {~bk| 1 ≤ k ≤ m(n − 1)} 
- C = {cij | 1 ≤ i ≤ n} U {cj | 1 ≤ j ≤ m} U {~ck| 1 ≤ k ≤ m(n − 1)} 
- Now we need to confirm that A, B, C are all of the same size. 

mn + m + m(n − 1) = 2mn = |A| = |B| = |C| 
- # of triples: 

Group I = 2mn  
Group II = 3m  
Group III = 2m2n(n − 1) = O(m2n2). 
In total, we have O(m2n2). 
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d. F is satisfiable iff (A, B, C, M) has a matching. 
 
Sketch of Proof: 
(=>) 
Let τ satisfy F. 
Pick triples in M’ as follows: 
If τ(xi) = 1, then pick the triple (−, −, xij

1) from Group 1. 
If τ(xi) = 0 then pick the triple (−, −, xij

0) from Group 1. 
 
For each Cj pick lj

tj s.t. τ(lj
tj) = 1. 

If τ(lj
tj) = xi then pick the triple (−, −, xij

0) from Group 2. 
If τ(lj

tj) = ㄱxi then pick the triple (−, −, xij
1) from Group 2. 

 
For each xij

0 or xij
1, not yet covered, choose the triple (~ak, ~bk, xij

0/1) from Group 3 
to cover it. 
 
(<=) 
Left it as exercise and gave the following hints: 

1. Let M’ be a matching. 

2.  
3XCOV Exact cover by 3-sets [sets of size 3]: 

- Theorem 11.7: 3XCOV ∈ NPC 
 
Proof: 
Left as exercise with the hint: show that 3DM ≤p 3XCOV. 


